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Abstract—Soft evidence sources play a critical role in social
networks and similar settings, where subjective evidence and
opinions are the norm. Study of opinion dynamics (including
consensus and cluster formation) in these scenarios requires agent
models that can capture the types of uncertainties and nuances
characteristic of soft evidence (human-generated input, subjective
evidence, etc.). To address the corresponding challenges, we
employ a Dempster-Shafer (DS) belief theoretic agent model
to explore opinion dynamics under bounded confidence. The
proposed model further captures the notions of global affinity
and the nature of persuasion of agents in social judgement
theory. The paper develops several new results and these results
regarding formation of clusters and consensus of agent opinions
are verified with the aid of several numerical studies accompanied
by bifurcation diagrams.

Index Terms—opinion dynamics, bounded confidence, belief
theory, consensus, cluster formation.

I. INTRODUCTION

Collective behavior of multi-agent systems, where the be-

havior is determined by local interactions between neighbor-

ing agents, finds application in many areas of interest. In

distributed control problems, the consensus state attempts to

achieve a control objective [1]; in estimation problems, the

agents attempt to estimate an underlying statistic of a signal

[2]; within the context of fusion, the agents attempt to pool

their evidence to arrive at a consensus decision [3]. To reach

a consensus regarding a variable or some phenomenon of

interest, the agents typically start with their own initial states

and then iteratively exchange their states regarding their beliefs

about the variable. Convergence analysis involves the study of

such iterated belief revision processes among agents embedded

in a networked environment.

With advances in sensing technology, information is now

routinely extracted from large numbers of heterogeneous

sources. These sources can include both hard sensors (i.e.,

conventional physics-based sensors) and soft sensors (i.e.,

human-based sources such as, expert opinions, subjective

evidence, etc.). The importance of soft sources is particularly

obvious in social network settings, which have become a

dominant societal force. In a network where the agents may

represent soft sources, consensus usually refers to a common

agreement about an opinion of interest. Then, the questions

of interest in consensus analysis are related to whether the

agents will reach a common consensus opinion or whether they

form consensus opinion clusters where each cluster consists

of agents with similar opinions [4]. One can also look at

the leader-follower problem, where agents follow other agents

who possess stronger opinions [5], emergence of extremism,

minority opinion spreading/survival, emergence of political

parties, etc. [6].

A. Previous Work

Social Judgement Theory (SJT) discusses the basic psycho-

logical processes underlying the expression of attitudes and

their modifiability through communication [7].

1) Boundedness: When a group of agents communicate

between each other, a particular agent may adjust its opinion

based mainly on the opinions of neighboring agents with

similar opinions. In other words, an agent may be willing to

update its opinion with the neighboring agent’s opinion only

if the ‘distance’ to that opinion is less than a certain bound of

confidence ε. Bounded confidence refers to this phenomenon.

The rationale for bounded confidence stems from the concept

of latitude of acceptance in SJT.

In the sociophysics community, the Hegselmann-Krause

(HK) model [8], [9] and the Deffuant-Weisbuch (DW) model

[10]–[12] have attracted considerable attention for modeling

real-valued opinions under bounded confidence [6]. Most of

the work on HK and DW models have been carried out on

a single opinion which is usually taken to be bounded in the

range [0, 1], where 0 and 1 represent the two strong extreme

opinions whereas values in (0, 1) represent weaker/stronger

opinions towards the extremes.

2) Global Affinity: Fortunato, et al. [13] have considered

vector opinions under bounded confidence. In such a scenario,

the affinity of a single opinion may not capture the global

affinity of the agents. For example, consider a situation where

two agents A and B initially have different views on a

particular political party, say T . So, if only this single opinion

is considered, under a bounded confidence model, A and B
may not exchange opinions. But, if A and B agree from a

global point-of-view (e.g., they may have similar opinions

about the other parties), under a bounded confidence model,

they may exchange opinions (including opinions about T ).

3) Nature of Persuasion: SJT further mentions that a re-

ceiving agent’s ego involvement should also be taken into

account when assessing opinion change [7]. Individuals with

smaller ego involvement are easy to persuade. While such

individuals tend to have a higher latitude of acceptance, nature
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of persuasion is a different notion than bounded confidence

(which is accounted for via ε). For instance, one may find

it difficult to persuade an agent possessing high ego in spite

of it having neighboring agents with similar opinions. Hence,

different opinion updating strategies may have to be imple-

mented to account for nature of persuasion of each agent. In

this work, we use two main opinion updating strategies named

cautious and receptive.

B. Contributions

Most consensus studies employ an agent state which is

modeled via real-valued vectors. However, such models are ill-

suited to handle agent opinions because they cannot capture

the types of uncertainties and the nuances characteristic of

soft evidence (e.g., human-generated input/opinions, human

domain expert opinions, etc.) in networked environments (e.g.,

in social network settings) adequately well. A better alternative

is provided by imprecise probabilistic formalisms, such as

Dempster-Shafer (DS) theory [14] where agent opinion can

be captured via the DS theoretic (DST) notions of mass,

belief, and plausibility. Consensus formation within such a

DST framework has recently been explored in [15], [16].

The DST and Bayesian frameworks are closely related [17].

When the DST support values are restricted to only singletons,

the DST notions of belief and plausibility yield probability

mass functions (p.m.f.s). This allows for a smoother transition

between DST and Bayesian notions. Our current work also

employs the DST framework to model agent opinions. We

also use receptive and cautious updating strategies as proposed

in [18] and utilized in [15], [16] to account for nature of

persuasion. However, this current work differs from [15], [16]

because we now account for bounded confidence. As we show

later, the receptive updating strategy with a larger bound of

confidence can model agents who are open to opinions of

others and thus are willing to change their opinions accord-

ingly. On the other hand, the cautious updating strategy with

a lower bound of confidence can capture the egocentric nature

of an agent. Our work can also account for the concept of

forceful agents as put forth in [19]. There are two ways to view

forceful agents: stubborn agents and community leaders/news

media. Stubbornness can be considered a form of egocentricity

of agents. Community leaders can be modeled as cautious

updating agents with a higher number of neighboring agents.

They influence other agents in the community and change the

opinion of receptive agents in a particular direction.

So, in essence, we analyze the consensus properties and

group formation under bounded confidence of agents who

are modeled within the DST framework. To the best of our

knowledge, this current work constitutes the first instance of

exploring the bounded confidence model within a DST opinion

representation. This current work makes a significant advance

towards bridging the gap between the DST framework for

opinion dynamics and SJT (including bounded confidence,

global affinity, and nature of persuasion).

Essential notions of DST are given in Section II. DST

modeling of opinion dynamics appears in Section III. Con-

sensus formation under bounded confidence within the DST

framework is given in Section IV. In this preliminary work, we

only address the case where the DST model which captures

the agent opinion contains only singleton focal elements (i.e.,

the p.m.f. case). Section V gives the results of our numerical

trials.

II. PRELIMINARIES

A. Basic Notions in DS Theory

We use N, R, and R≥0 to denote the integers, reals, and the

non-negative reals, respectively.

In DS theory, the frame of discernment (FoD) refers to the

discrete set Θ = {θ1, · · · , θM} of mutually exclusive and

exhaustive propositions [14]. The cardinality |Θ| = M of Θ is

the number of independent singleton propositions. A singleton

proposition θi ∈ Θ represents the lowest level of discernible

information. The power set of the FoD 2Θ = {A : A ⊆ Θ}
denotes all the possible subsets of Θ. For A ⊆ Θ, A denotes

all singletons in Θ that are not in A.

1) Basic Belief Assignment (BBA): A basic belief assign-

ment (BBA) or mass assignment is a mapping m(·) : 2Θ 7→
[0, 1] such that

∑
A⊆Θ m(A) = 1 and m(∅) = 0. The

BBA measures the “support” assigned to proposition A ⊆ Θ.

Propositions that receive non-zero mass are referred to as focal

elements. The set of focal elements is the core F . The triplet

E = {Θ,F ,m} is referred to as the body of evidence (BoE).

We also use the notation F̂ = {A ⊆ Θ : Bl(A) 6= 0}.

2) Notion of Ignorance: In DST, focal elements can be any

singleton or composite (i.e., non-singleton) proposition. DST

captures the notion of ignorance by allocating masses to com-

posite propositions. For instance, the composite proposition

{θiθj}, θi, θj ∈ Θ, is a doubleton and the mass assignment

m(θiθj) > 0 represents ignorance or lack of evidence to

differentiate between the two constituent singletons. The state

of complete ignorance can be easily captured via the vacuous

BBA 1Θ which has Θ as its only focal element, i.e., the mass

assignment structure of the vacuous BBA is m(A) = 1 for

A = Θ (and hence m(A) = 0 for A ⊂ Θ).

A BBA is called Bayesian if each focal element is a single-

ton. For a Bayesian BBA, the BBA, belief, and plausibility,

all reduce to a probability assignment.

3) Belief and Plausibility: Given a BoE, E ≡ {Θ,F ,m},

the belief function Bl : 2Θ 7→ [0, 1] is defined as Bl(A) =∑
B⊆A m(B). Bl(A) represents the total belief that is com-

mitted to A without also being committed to its complement

A. The plausibility function Pl : 2Θ 7→ [0, 1] is defined as

Pl(A) = 1−Bl(A). It corresponds to the total belief that does

not contradict A. The uncertainty of A is [Bl(A),Pl(A)].

4) DS Theoretic Conditionals: Of the various notions of

DST conditionals abound in the literature, the Fagin-Halpern

(FH) conditional offers a unique probabilistic interpretation

and hence a natural transition to the Bayesian conditional

notion [17], [20]. The extensive study in [21] identifies sev-

eral attractive properties of the FH conditionals including its

equivalence to other popular notions of DST conditionals.

Definition 1 (FH Conditionals). For the BoE E = {Θ,F ,m}
and A ⊆ Θ s.t. A ∈ F̂ , the conditional belief Bl(B|A) : 2Θ 7→
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[0, 1] and conditional plausibility Pl(B|A) : 2Θ 7→ [0, 1] of B
given A are

Bl(B|A) =
Bl(A ∩B)

Bl(A ∩B) + Pl(A ∩B)
;

Pl(B|A) =
Pl(A ∩B)

Pl(A ∩B) + Bl(A ∩B)
.

The conditional core theorem [22] can be utilized to directly

identify the conditional focal elements to improve computa-

tional performance when applying FH conditionals.

B. Conditional Update Equation (CUE)

The conditional update equation (CUE) [18], [23] offers

a strategy to update evidence from different BoEs Ej ≡
{Θj ,Fj ,mj}, j = 1, 2, . . . , N , to arrive at a new updated

BoE E = {Θ,F ,m}. Without loss of generality, let us

consider updating the BoE E1 with the evidence in Ei, i =
2, 3, . . . , N , to generate the BoE E . In the CUE, the updated

belief of an arbitrary proposition B in the BoE E is given by

Bl1(B)(k+1) = α1Bl1(B)k +

N∑

i=2

∑

A∈F̂i

β1,i(A) Bli(B|A)k.

(1)

We denote this as E ≡ E1 ⊳ (E2 ⊲⊳ · · · ⊲⊳ EN ). Here,

α1 and β1,i are non-negative parameters that satisfy α1 +∑N

i=2

∑
A∈F̂i

β1,i(A) = 1.

1) Selection of the CUE Parameters: The work in [18]

provides different strategies for the selection of the CUE

parameters. The parameters α1 determines the flexibility of

accepting updates from neighbors. The lower the value of α1,

the higher the flexibility of the CUE update towards changes.

The parameters β1,i weigh the updates from incoming evi-

dence. These parameters can be selected to be proportional to

the support available for the corresponding focal element from

E1 or Ei. This generates two strategies which are referred to

as cautious and receptive strategies, respectively [18].

III. DST MODELING OF OPINION DYNAMICS

Let us consider N agents with BoEs A = {E1, E2, · · · , EN}
embedded in a directed graph G[k] = (A, E[k]) at the

discrete-time instant k ∈ N. Each node in G[k] represents

an agent; a directed edge eij ∈ E[k] represents unidirectional

information exchange link from agent j to agent i (i.e., agent

i can receive information from agent j), and eij is an element

in the adjacency matrix E[k] of graph G[k].

The opinion of agent i ∈ {1, 2, · · · , N} at discrete-time

index k ∈ N is modeled via the BBA mk
Θi

. We assume

that the FoDs associated with the agents are identical and

equal to Θ. So, henceforth, we will denote mk
Θi

simply by

mk
i . Given an arbitrary B ⊆ Θ, the BBA that agent i

associates with B at time index k is mi(B)k. The opinion

profile of B ⊆ Θ at time index k is the size N vector

m(B)k = [m1(B)k, . . . ,mN (B)k]
T . The initial state of the

opinion profile of B is m(B)0.

A. Bounded Confidence

The process of updating an agent’s opinion is as follows.

First, agent i judges how close the opinion of its neighbors j
are. Then, agent i updates Ei in response to the opinion Ej if

Ej is within the latitude of acceptance (bound of confidence)

εi, i.e., 0 ≤ ‖Ei−Ej‖ ≤ εi where ‖·‖ denotes any valid norm.

In the DW model, the threshold ε is referred to as an

openness character [10]. Another interpretation views ε as

an uncertainty, i.e., if agent i possesses an opinion with

some degree of uncertainty εi, then agent i does not care

about the views of other agents outside its uncertainty range.

Depending on the bound of confidence, agent-based models

can be considered as either heterogeneous or homogeneous. A

heterogeneous model is where each agent possesses a unique

bound of confidence εi, distinct from that of its neighbors. In

a homogeneous model, all bounds of confidence are assumed

to be equal, i.e., ε1 = · · · = εN ≡ ε.

Note that a model based on bounded confidence requires

a definition of “closeness” and the selection of a suitable

measure of closeness is crucial for opinion updating under

bounded confidence. If agent opinions are represented via real

numbers or singletons (e.g., each agent opinion is represented

by a real-valued vector), then Euclidean norm could serve as a

measure of closeness of opinions. In our case, agent opinions

are captured via DST BoEs, hence the distance measure has

to account for the closeness of BoEs. While noting that other

DST distance measures may serve as valid candidates, we use

the DST distance measure in [24], [25].

Definition [24] The distance between the two BoEs Ei =
{Θ,Fi,mi} and Ej = {Θ,Fj ,mj}, where |Θ| = M , is

‖Ei − Ej‖ =

√
1

2
(mi − mj)

TD (mi − mj),

where mi and mj are 2M × 1 column vectors formed from

the mass assignments, D is a 2M × 2M matrix with elements

dmn = |Am∩An|/|Am∪An|, Am, An ⊆ Θ, with |∅∩∅|/|∅∪
∅| ≡ 0.

B. Opinion Updating

We assume that each agent updates its opinion in accordance

with the CUE in (1). Our opinion update model adopts the

receptive and cautious updating strategies proposed in [18].

Essentially, the selection of parameters β1,i in (1) determines

the cautiousness or the receptiveness of an agent as follows:

(i) Receptive updating: Select β1,i(A)[·] = KΘi
mΘi

(A)[·].
(ii) Cautious updating: Select β1,i(A)[·] = KΘ1

mΘ1
(A)[·].

Here, KΘi
and KΘ1

are constants.

According to the number of cautious agents present, we

have the following cases to consider:

1) All receptive agents: This is the most common com-

munity or network agent type that has been discussed in

literature [6], [9], [10].

2) One cautious agent: Here, the group of agents contain

all receptive agents except one cautious updating agent

(e.g., the scenarios considered in typical leader-follower

models [2], the recent work in [15], [16]).
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3) Multiple cautious agents: Here, there are more than

one cautious updating agents, generally with different

initial opinions. To our knowledge, this case has not been

addressed previously within the DST framework.

C. Consensus and Cluster Formation

Consensus in a DST environment has been explored in [15],

[16], where the theory of paracontractions has been utilized

for consensus analysis. Our analysis in Section IV is based

on, and extends, the work in [4], [8] and provides sufficient

conditions for consensus/cluster formation.

IV. CONSENSUS FORMATION UNDER BOUNDED

CONFIDENCE

Consider our N BoEs {E1, . . . , EN} defined on the

same FoD Θ = {θi, . . . , θM}. Note that mi(θw)k de-

notes the opinion on singleton θw ∈ Θ of agent i ∈
{1, . . . , N} at discrete-time k ∈ N. The vector m(θw)k =
[m1(θw)k, . . . ,mN (θw)k]

T ∈ R
N
≥0 is the opinion profile of

singleton opinion θw at time k.

Suppose agent i updates Ei by taking into account the

opinions of all agents j whose BoEs Ej lie within the distance

εi from agent i’s own opinion, i.e., ‖Ei − Ej‖ ≤ εi. Here,

εi > 0 is the bound of confidence of agent i based on the

selected norm. The opinion update is modeled via the CUE in

(1) which, in terms of masses, can be expressed as

mi(B)(k+1) = αi,kmi(B)k +
∑

j 6=i

∑

A∈Fj,k

βij(A)kmj(B|A)k,

(2)

where i, j ∈ {1, . . . , N}, αi,k and βij(·)k are non-negative

real numbers satisfying

αi,k +
∑

j 6=i

∑

A∈Fj,k

βij(A)k = 1. (3)

For mathematical convenience, we assume a homogeneous

bounded confidence model, i.e., all agents are taken to have

the same confidence range εi ≡ ε. In addition, we also assume

a static network (in the sense that the communication links are

static). The analytical results below apply to the case where

the DST models contain only singleton focal elements (i.e.,

the p.m.f. case).

Definition 2. For agent i ∈ {1, . . . , N}, the set of neighbor-

hood agents at discrete-time instance k is

Ik(i) = {j = 1, . . . , N : ‖Ei − Ej‖ ≤ ε}.

The number of neighbor agents of agent i is τi,k = |Ik(i)|.

For the case of DST models that has only singleton focal

elements, one can show that the opinion update can be written

as the following discrete-time dynamical system:

m(θw)k+1 = Akm(θw)k, (4)

where the initial conditions are denoted as m(θw)0 ∈ (R≥0)
N

and the N ×N matrix Ak = {aij,k} is defined as

aij,k =





αi,k, for i = j;

γi,k, for j ∈ Ix(i);

0, otherwise.

(5)

Here, γi,k = (1− αi,k)/τi,k.

We also use the following notion [4], [8]:

Definition 3. The range R of a singleton opinion profile θw
at discrete-time k is

R(m(θw)k) = max
1≤i,j≤N

(mi(θw)k −mj(θw)k), θw ∈ Θ.

In [8], sufficient conditions for consensus have been given

using a certain ε-profile. However, this previous work only

considers real-valued agent opinions. Here, we extend the

result to p.m.f.s under certain assumptions on DST BoEs.

Similar to the real-valued opinions case in [4], [8], let us

assume that our BoEs can be arranged as an ordered list

according to the distance relative to a particular ‘reference’

BoE. Without loss of generality, we take E1 as the refer-

ence BoE and re-label all the BoEs as E1, . . . , EN so that

‖E2 − E1‖ ≤ . . . ≤ ‖EN − E1‖. If this order does not change

when the opinions of agents get updated each time, then it is

called an order preserving arrangement. Furthermore, if each

singleton opinion profile can be arranged in the same order as

the BoE indices as ascending or descending mass values, then

it is referred to as a strictly order preserved arrangement.

Definition 4. Under the strictly order preserved arrangement,

the BoE setting is said to have a ε-chain if each agent has

distance to its neighbors less than the bound of confidence ε
such that

‖Ei+1 − Ei‖ ≤ ε, ∀i = 1, . . . , N − 1.

A. All Receptive Agents

We first explore consensus when all agents are receptive.

For this purpose, we consider a strictly order preserved ar-

rangement and analyze fixed points of the agent opinions. For

such an arrangement, the diagonal and off-diagonal entries

of the transition matrix Ak are positive (Proposition 3 in

[4]). Furthermore, a product of (N − 1) such matrices, say

Bζ = {bij,ζ}, is positive and given by

Bζ = A(N−1)(ζ+1)−1 · · ·A(N−1)ζ > 0, (6)

i.e., bij,ζ > 0, for all i, j, and ζ ∈ N.

For all singleton opinion profiles m(θw), θw ∈ Θ, the

updates at discrete-time (k + 1), such that k ∈ (N − 1) · N,

can be given as

m(θw)k+1 = BζBζ−1 · · ·B0m(θw)0, (7)

where ζ = (k + 1)/(N − 1)− 1.

From [8], for a non-negative row stochastic matrix C, we

have the following result:

Lemma 1. [8] When a matrix C is row stochastic, then, for

all m(θw) ∈ R
N
≥0,

R (Cm(θw)k)

≤

(
1− min

1≤i,j≤N

N∑

ℓ=1

min{aiℓ,k, ajℓ,k}

)
R(m(θw)k). (8)

As the matrices Bζ s are positive row-stochastic, from

Lemma 1 we have
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Lemma 2. For all positive row-stochastic matrices Bζ s,

R(Bζm(θw)k+1) ≤ λR(m(θw)k+1), for some λ < 1.

From Lemma 2, we know that R(Bζm(θw)k+1) <
R(m(θw)k+1). Hence, from Corollary 7 in [4], we can form

a sequence (R(m(θw)k̃))k̃ that converges to 0. Due to the

row stochasticity of Ak, from Lemma 1, we can show that

the sequence (R(m(θw)k))k is monotonically decreasing and

indeed a Cauchy sequence. But, (R(m(θw)k̃))k̃ is a subse-

quence of the sequence (R(m(θw)k))k. Hence the sequence

(R(m(θw)k))k converges to 0.

When (R(m(θw)k))k → 0, ∀θw ∈ Θ, we reach a con-

sensus. In summary, we have shown that consensus will be

reached for a strictly order preserved arrangement of BoEs

with an ε-chain. However, when a ‘crack’ appears in the ε-

chain, the agents get divided into independent groups, and the

above result applies to each subgroup yielding a fixed point

with separate cluster points for each independent group.

B. One Cautious Agent

When a cautious agent, E
C1
, C1 ∈ {1, . . . , N}, is present

with all the others being receptive agents, the transition matrix

Ak at time k can be given as in

Ak =



Pk uk Sk

0
T

1 0
T

Rk vk Qk


 , (9)

where

Pk, Qk, Rk, Sk = square matrices of appropriate size;

uk,vk = vectors of appropriate size;

0 = zero vectors of appropriate size.

The matrix in (9) is row-stochastic. Hence, Lemma 1 can be

applied. Further, for the all singleton scenario, as the opinion

of the cautious agent does not change, it can be seen that

min
y∈Ik(C1)

[my(θw)k+1] ≤ mC1(θw)k+1

≤ max
z∈Ik(C1)

[mz(θw)k+1], (10)

for all y, z ∈ Ik(C1), θw ∈ Θ. Hence the neighboring

receptive agents of cautious agent C1 converge to the opinion

of the leader, viz., C1. When the conditions for the ε-chain

are satisfied, a consensus will be reached. The fixed point is

given by the masses of the cautious agent’s singleton opinions.

Again, when a crack appears in the ε-chain, agents get divided

into independent groups. However, the group that contains the

cautious agent converges to the cautious agent’s opinion.

C. Multiple Cautious Agents

If there are more than one cautious agent, clearly there will

be no consensus (unless off course all the cautious agents have

the same opinion). In a strictly order preserved arrangement

with an ε-chain, the receptive agents who get updated from

only one cautious agent converge to that particular cautious

agent’s opinion. The analysis is similar to the scenario with

one cautious agent (see Section IV-B).

When there is more than one cautious agent in the bound of

confidence of a receptive agent, two possibilities could happen.

(i) If the receptive agent continues to have more than

one cautious agent for iterations to come, then it will

converge to a fixed point. The fixed point is in the convex

hull of the set of points corresponding to neighboring

cautious agents.

(ii) Even if the receptive agent’s neighborhood initially con-

tains more than one cautious agent, this neighborhood

could later contain fewer cautious agents. This situation

can be addressed as in IV-B or item (i) above.

V. RESULTS AND DISCUSSION

We now study the formation of consensus/clusters based on

the proposed methodology. We explore all the three scenarios:

all receptive agents, one cautious agent, and multiple cautious

agents. The results of consensus/cluster-formation are shown

with the aid of bifurcation diagrams which depict the state

of cluster formation/consensus in the limit density versus the

bound of confidence ε [6], [26].

All the scenarios use 100 agents, each having the identical

FoD Θ = {θ1, θ2, θ3}. An agent i’s opinion is represented

via a DST model with focal elements restricted to be sin-

gleton propositions, i.e., the opinion model is essentially

a p.m.f. with probabilities {mi(θ1),mi(θ2),mi(θ3)}, where∑3
j=1 mi(θj) = 1.

A. All Receptive Agents

1) Uniformly Distributed Case: Most studies on real-valued

opinion dynamics (with agents having a single opinion in

the range [0, 1]) have used random and uniformly distributed

initial opinion profiles or initial densities that are uniformly

distributed in the opinion space [6]. In accordance with these

previous works, we have conducted a trial experiment with

100 receptive agents, assuming that the initial DST mass of the

opinion on θ1 is uniformly distributed in the range [0, 1], i.e.,

mi(θ1) = U(0, 1), i ∈ {1, . . . , 100}. The remaining mass is

equally distributed among the other singletons θ2 and θ3. Fig. 1

shows the corresponding bifurcation diagram with respect to

θ1. It can be seen that, for smaller values of ε (approximately

< 0.12), no consensus is formed. Indeed, the lower the value

of ε, the higher the number of clusters. The cluster formation

at ε = 0.1 and consensus at ε = 0.3 appear in Figs 2a and 2b,

respectively. The analysis in Section IV-A directly applies to

this scenario, where an ε-chain is formed for ε > 0.12.

2) Dirichlet Distribution Case: Further experiments were

carried out by sampling opinions from a Dirichlet distri-

bution [27], i.e., mi(θ1, θ2, θ3; 2, 2, 2) = Dir(2, 2, 2), i ∈
{1, . . . , 100}. The symmetric Dirichlet distribution corre-

sponds to the case having no prior information to favor one

singleton over the other. The symmetric Dirichlet distribution

with concentration parameter equal to one is equivalent to

a uniform distribution over the open standard 2-simplex.

The parameters (2, 2, 2) in the Dirichlet distribution enforce

a symmetric and dense distribution with a centered mode.

Fig. 3 shows the bifurcation diagram with all receptive agents.

It can be seen that consensus is reached when ε > 0.15
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Fig. 7: Two cautious agents case/masses of receptive agents sampled from Dir(2, 2, 2)/masses of cautious agents are

{mC1(θ1),mC1(θ2),mC1(θ3)} = {0.75, 0.125, 0.125}, {mC2(θ1),mC2(θ2),mC2(θ3)} = {0.25, 0.375, 0.375}: evolution of

opinion profile of θ1.

demonstrate cluster formation among opinions of agents. The

proposed DST framework can be used to model opinion

dynamics of multi-agent systems where soft data play a critical

role (e.g., in social network settings).
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